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Abstract

Process capability indices have been introduced to provide numerical measures on whether a manufacturing process

is capable of reproducing items meeting the specifications predetermined by the product designers or the consumers.

Process yield is one of the most common criteria used in the manufacturing industry for measuring process perfor-

mance. The formula Spk has been proposed to calculate the process yield for normal processes. The formula Spk provides
an exact measure on the process yield. Unfortunately, the statistical properties of the estimated ŜSpk are mathematically
intractable. In this paper, we apply the bootstrap simulation method to construct the lower confidence bound of Spk. We
then present a real-world application to the liquid-crystal display module process, to illustrate how we may apply the

formula Spk to actual data collected from the factories.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Process capability indices (PCIs) have been proposed

to the manufacturing industry to provide numerical

measures on whether a process is capable of producing

product items within the specification limits predeter-

mined by the product designers or the consumers. The

PCIs were first applied to the automatic industry in

Japan and America. In a purchasing contract, a mini-

mum value of the PCI is usually specified. If the pre-

scribed minimum value of the PCI fails to be met, the

process is determined to be incapable. Otherwise, the

process will be determined to be capable.

Process yield has longtime been the most common

and standard criteria used in various manufacturing

industries to characterize the process performance.

Process yield is currently defined as the percentage of the

processed product units passing the inspections. That is,

the product characteristic must fall within the manu-

facturing tolerance. For product units rejected during

the inspection (nonconforming), additional costs would

be incurred to the factory for scrapping or reworking the

product. All passed product units are treated equally

and accepted by the producer, which requires no addi-

tional cost to the factory.

For processes involving two-sided manufacturing

specifications, the process yield can be calculated as

Yield ¼ F ðUSLÞ � F ðLSLÞ, where USL and LSL are

the upper and the lower specification limits, respectively,

and F ðxÞ is the cumulative distribution function of the
process characteristic. If the process characteristic is

normally distributed, then the process yield can be ex-

pressed as Yield ¼ U½ðUSL� lÞ=r� � U½ðLSL� lÞ=r�,
where the parameter l is the process mean, parameter r
is the process standard deviation, and UðxÞ is the cu-
mulative distribution function of the standard normal

distribution Nð0; 1Þ. Based on the above expression of
the process yield, Boyles [1] considered the index Spk to
calculate the yield for normal processes, defined as

Spk ¼
1

3
U�1 1

2
U

USL� l
r

� ��
þ 1
2
U

l � LSL
r

� ��
:
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The index Spk establishes the relationship between the
manufacturing specifications and the actual process

performance, which provides an exact measure on the

process yield. If Spk ¼ c, then the process yield can be
expressed as Yield ¼ 2Uð3cÞ � 1. The fraction of non-
conforming is defined as the percentage of product items

fall outside the specification limits, which can be repre-

sented as 1�Yield ¼ 2ð1� Uð3SpkÞÞ. Obviously, there
is a one-to-one correspondence between Spk and the
process yield. Thus, Spk provides an exact measure of the
process yield. Note that other existing methods only

provide approximate (instead of exact) yield measures.

Table 1 displays the fraction of nonconforming (in ppm)

as a function of the index Spk, (calculated by SAS
computer programs).

2. Estimating the measure Spk

A natural estimator of the index Spk may be obtained
by replacing the unknown process mean l by the sample
mean X ¼ ðX1 þ X2 þ � � � þ XnÞ=n, and the unknown

process standard deviation r by the sample standard

deviation, S ¼ ½
P

ðXi � X Þ2=ðn� 1Þ�1=2, respectively,

which may be obtained from a stable (statistically in

control) process. Thus, the natural estimator ŜSpk may be
expressed as

ŜSpk ¼
1

3
U�1 1

2
U

USL� X
S

� ��
þ 1
2

U
X � LSL

S

� ��
:

Unfortunately, the exact distribution of ŜSpk is math-
ematically intractable. Lee et al. [2] derived an approx-

imate distribution of the estimator ŜSpk using Taylor
expansion technique. They showed that the estimator

ŜSpk is approximately distributed as the normal distribu-

tion. The calculation of the approximation is, however,

rather messy, and cumbersome to deal with. Further, the

accuracy of the approximation has not been investi-

gated. Thus, the approximation would not be practically

useful until the difficulty is overcome. For practical

purpose, in this paper we use the bootstrap resampling

technique to find the lower confidence bound on Spk, so
that practitioners/engineers can use them to perform

quality testing and determine whether their process

meets the preset quality requirement. We also present a

case study on a liquid-crystal display module (LCM)

manufacturing process to illustrate how the bootstrap

lower confidence limit of Spk may be applied to actual
process data collected from the factory.

3. The bootstrap methodology

Efron [3,4] introduced a nonparametric, computa-

tional intensive but effective estimation method called

‘‘the bootstrap’’, which is a data based simulation tech-

nique for statistical inference. In particular, one can

use the nonparametric bootstrap method to estimate the

sampling distribution of a statistic, while assuming only

that the sample is a representative of the population

from which it is drawn, and that the observations are

independent and identically distributed. The merit, in its

simplest form, is that the nonparametric bootstrap does

not rely on any distributional assumptions about the

underlying population.

Suppose the set of observations fx1; x2; . . . ; xng is a
random sample of size n taken from a process. A

bootstrap sample, fx�1; x�2; . . . ; x�ng, is a sample of size n
drawn (with replacement) from the original sample

fx1; x2; . . . ; xng. Hence, there are a total of nn possible

Nomenclature

F ðxÞ the cumulative distribution function of the

process characteristic

UðxÞ the cumulative distribution function of the

standard normal distribution Nð0; 1Þ
fx1; x2; . . . ; xng a random sample of size n taken from

a process

fx�1; x�2; . . . ; x�ng a bootstrap sample of size n drawn
(with replacement) from the original sample

fx1; x2; . . . ; xng

ĥh� an estimate of h can be computed from the

bootstrap sample

za=2 the upper a=2 percentile of the Nð0; 1Þ dis-
tribution

ĥh�ðiÞ the ith ordered ĥh�
i , i ¼ 1; 2; . . . ;B

Table 1

Various Spk values and the fraction of nonconformities (in ppm)

Spk 0.25 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 2.00

ppm 453 255 133 614 71 861 35 729 16 395 6934 2700 967 318 96 27 7 2 0.34 0.07 0
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resamples. Thus, the bootstrap sampling is equivalent to

sampling with replacement from the empirical distribu-

tion function, and the bootstrap distribution is an esti-

mator of the distribution of ŜSpk. In practice, usually only
a small number of random samples out of the nn possible
resamples is drawn, the estimate is calculated for each of

these, and the subsequent empirical distribution is re-

ferred to as the statistic’s bootstrap distribution. Efron

and Tibshirani [5] indicated that a rough minimum of

1000 bootstrap resamples is usually sufficient for com-

puting confidence interval estimates with reasonably

accuracy.

Suppose the random variable X measures process

performance with respective to certain quality charac-

teristic. The distribution of X is generally unknown.

Suppose we wish to estimate some parameter, h, that
characterizes the performance of the process. An esti-

mate of h can be computed from the bootstrap sample,

denoted as ĥh�, which is called the bootstrap estimate.

The resampling procedure can be performed repeatedly

to obtain a certain number of bootstrap samples, for

example, B times. Then, the B bootstrap estimates

ĥh�
1; ĥh

�
2; . . . ; ĥh

�
B, can be computed from the resamples.

Research papers discussing the bootstrap methods in-

clude Efron and Gong [6], Gunter [7,8], Mooney and

Duval [9], Young [10], and many others. In particular,

Efron and Tibshirani [5] developed three types of boot-

strap confidence interval. Those include the standard

bootstrap (SB) confidence interval, the percentile boot-

strap (PB) confidence interval, and the biased-corrected

percentile bootstrap (BCPB) confidence interval, which

are defined as follows:

(1) Standard bootstrap: From the B bootstrap esti-

mates fĥh�
i g, i ¼ 1; 2; . . . ;B, we calculate the sample av-

erage, and the sample standard deviation as

�hh� ¼ 1

B

XB
i¼1

ĥh�
i ;

S�
ĥh
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1
XB
i¼1

ðĥh�
i � �hh�Þ2

vuut :

If the distribution of the estimate ĥh is approximately
normal, the ð1� aÞ100% level SB confidence interval for
h is ĥh� � za=2S�

ĥh
, where za=2 is the upper a=2 percentile of

the Nð0; 1Þ distribution.
(2) Percentile bootstrap: From the ordered collection

of fĥh�
i g, i ¼ 1; 2; . . . ;B, the a=2 percentage and the

ð1� a=2Þ percentage points are used to obtain the

ð1� aÞ100% level PB confidence interval for h, where
ĥh�ðiÞ is the ith ordered ĥh�

i , i ¼ 1; 2; . . . ;B.

½ĥh�ða=2
 BÞ; ĥh�ðð1� a=2Þ 
 BÞ�:

(3) Biased-corrected PB: The bootstrap distribution

obtained using only a sample of the complete bootstrap

distribution may be shifted higher or lower than would

be expected (i.e, a biased distribution). Thus, a modi-

fied method is developed to correct for this potential

bias (see Efron [4] for a complete justification of this

method). First, we use the (ordered) distribution of

ĥh�
i to calculate the probability p0 ¼ Pr½ĥh�ðiÞ6 ĥh�, i ¼ 1;
2; . . . ;B, where ĥh is the estimated value of h using a
random sample fx1; x2; . . . ; xng. Second, we calculate the
percentile point z0 ¼ U�1ðp0Þ , and PL ¼ Uð2z0 � za=2Þ,
PU ¼ Uð2z0 þ za=2Þ, where Uð:Þ is the standard normal
cumulative distribution function. Finally, the BCPB

confidence interval is found as ½ĥh�ðPLBÞ; ĥh�ðPUBÞ�.
Franklin and Wasserman [11] investigated the lower

confidence bounds for the capability indices, Cp, Cpk and
Cpm using the three bootstrap methods. Some simula-
tions were conducted, and a comparison was made

among the three bootstrap methods based on the para-

metric estimates. The simulation results indicate that for

normal processes the bootstrap confidence limits per-

form equally well (see Chou et al. [12], Bissell [13], and

Boyles [14]). And for nonnormal processes the bootstrap

estimates performed significantly better than other

methods. Franklin and Wasserman [11] also found that

in all cases investigated the SB method performs better

than the PB and the BCPB methods. Pearn and Chen

[15] also applied the three bootstrap methods to find the

lower confidence bounds of the yield measure Spk, and
compared their performance based on the coverage

percentage. Their results showed that the SB performs

better than the other two methods. In particular, as the

sample size n exceeds 45, the coverage percentage of the

95% lower confidence bound for the SB method, is

greater than 90%.

4. LCM manufacturing process

To illustrate how the bootstrap lower confidence

bound of Spk may be established and applied to the ac-
tual data collected from the factories, we present a case

study on the liquid-crystal module manufacturing pro-

cess. The case we investigated was taken from a manu-

facturing factory located on the Science-Based Industrial

Park, Taiwan, making the LCMs. The LCM is one of

the key components used in many high-tech electronic

commercial devices, such as the cellular phone, the PDA

(personal digital assistant), the pocket calculator, digital

watch, automobile accessory visual displays, and many

others. Three key components make the LCM functions

properly. Those include the liquid-crystal display, the

back lighting, and the peripheral (interface) system. A

typical assembly drawing for the LCM product is de-

picted in Fig. 1.
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The mounting technology for the chip on glass

(COG) makes the exposed particle overturned, with the

side of circuits facing downward. Then, the electricity

conduction is joined between the IC and the panel of the

liquid-crystal display through the mounting material.

Currently, the mounting technology of the COG is the

best manufacturing technology for the LCM in terms of

the mounting density. It is important to note that dif-

ferent mounting material requires different mounting

technology of the COG.

In the factory, the manufacturing process control

flow-chart of the COG is illustrated in Fig. 2. For the

main bonding process, the bonding precision is an es-

sential process parameter we focused on in our study.

We investigated a particular model of the LCM product

with the upper and the lower specification limits set

to USL ¼ 15 lm, LSL ¼ �15 lm, and the target value
is set to T ¼ 0. If the characteristic data does not
fall within the tolerance (LSL, USL), the lifetime or

reliability of the LCM will be discounted. To ensure

the production quality, and to satisfy the customers’

requirement, the company has set the yield index Spk P
1:50, which implies that no more than 7 ppm fraction of
nonconforming for the product. If the capability re-

quirement fails to be met, the LCM product would be

seriously affected on its reliability or lifetime.

Fig. 1. The assembly drawing of the LCM product.

Fig. 2. Flow-chart of the COG manufacturing process.
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4.1. The lower confidence bound

In order to evaluate the process capability based on

the 95% lower confidence limit using the SB method.

According to the process control plan of the COG, the

random sample data in consecutive two day are col-

lected, which are displayed in Table 2. The sample ob-

servations are obtained through the inspection, using

microscope by visual, which were collected eight pieces

per every 2 h. These observations were justified taken

from a stable process, and the characteristic distribution

is shown to be approximate normal.

Then, B ¼ 10000 bootstrap resamples (each is of size
64) are drawn randomly from the original sample. A

95% bootstrap lower confidence limit of the SB method

for Spk is constructed. If the calculated bootstrap lower
confidence limit is found to be smaller than the specified

1.50 index value, we would judge that the process is

incapable. Quality improvement activities will be initi-

ated. Otherwise, the process is considered to be capable.

From the 10 000 bootstrap estimates ŜS�
pkðiÞ, the sample

average can be calculated as

S
�
pk ¼

1

10000

X10 000
i¼1

ŜS�
pkðiÞ;

and the sample standard deviation can be obtained as

S�
ŜSpk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

9999

X10 000
i¼1

ðŜS�
pkðiÞ � S

�
pkÞ

2

vuut :

Thus, the 95% SB lower confidence limit for Spk can be
constructed as

LCB ¼ �SS�
pk � Z0:05 
 S�

ŜSpk
:

The bootstrap resampling computation is rather com-

plicated. In order to accelerate the computation, an in-

tegrated SAS computer program is developed (see

Appendix A). The practitioners only need to input the

manufacturing specifications, USL, LSL, a specified

quality level of Spk and a collected sample data of size n.
The estimated value ŜSpk and the SB lower confidence
bound of Spk may be easily obtained. Thus, whether or
not the process is capable may be determined.

For the LCM real example we investigated, Table 2

shows the simulation result with ŜSpk ¼ 1:72588 using the
SB bootstrap method, the lower confidence bound on

Spk, was found to be 1.44244, which is less than the
specified 1.50 (the minimal value of the measure to reach

a positive judgment). Thus, we may not conclude that

the bonding precision of the bonding process is capable.

Quality improvement team must immediately initiate

some improvement activities to ensure the minimal re-

quirement met.

5. Conclusions

Bootstrap resampling method is a nonparametric,

computational intensive but effective estimation method,

which is a data based simulation technique for statistical

inference. In particular, one can use the nonparametric

bootstrap method to estimate the sampling distribution

of a statistic. Bootstrap method has been widely applied

to statistical process control. In this paper, we apply the

bootstrap method to the process yield measure Spk to
obtain the confidence bounds. The proposed approach

makes it feasible for the engineers to perform approxi-

mate process performance testing using the calculated

Spk. We also provide an efficient SAS computer program
for the engineers to use. The program only requires an

input of the manufacturing specification limits, and the

sample data, then the estimated value ŜSpk and SB lower
confidence limit of Spk will be outputted quickly. In
summary, bootstrap lower confidence limit of Spk may
be used to evaluate process capability in statistical pro-

cess control.

Appendix A.

/* – – – – – – – – – – – – – – – – -

input the specification limits, USL, LSL, and the

target value T

– – – – – – – – – – – – – – – – –*/

data para;

input usl lsl T;

cards;

15 �15 0
;

/* – – – – – – – – – – – – – – – – -

Table 2

The collected sample data with 64 observations (unit: lm)

�0.98 4.63 0.78 �1.67
2.34 �1.97 �0.07 �2.32
2.18 3.79 0.35 �1.20
3.13 �5.58 �1.91 �1.18
�0.66 �3.16 5.01 �1.42
2.20 2.20 2.16 �2.87
�0.31 0.83 �0.86 �2.04
1.24 5.83 0.50 �0.81
3.07 �1.42 �2.42 �4.75
1.02 �6.51 1.34 1.06

0.10 5.02 �0.76 �4.84
1.28 2.19 0.16 �2.66
�0.87 �3.52 �0.05 1.11

1.47 0.28 �1.02 �9.23
�2.01 �2.30 4.26 3.41

3.34 2.85 �2.43 �1.84
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store the input of the original sample data of size

n¼ 64
– – – – – – – – – – – – – – – – –*/

data size;

set para;

array x{64} x1–x64;

array y{64} y1–y64;

retain seed 123;

do i¼ 1 to 64;
input x{i} @;

end;

/* – – – – – – – – – – – – – – – – -

calculate the estimated Spk based on the original

sample of n¼ 64
– – – – – – – – – – – – – – – – –*/

omean¼mean(of x1–x64);
ostd¼ std(of x1–x64);
c¼ (usl�omean)/ostd;
d¼ (omean�lsl)/ostd;
ESpk¼ 1/3*probit(0.5*probnorm(c)+0.5*prob-
norm(d));

/* – – – – – – – – – – – – – – – – -

generate 10000 bootstrap samples from the original

sample of n¼ 64
– – – – – – – – – – – – – – – – –*/

do m¼ 1 to 10000;
do n¼ 1 to 64;
L¼ int(ranuni(seed)*64+1);
y{n}¼ x{L};
end;

/* – – – – – – – – – – – – – – – – -

Compute the 10000 bootstrap estimates ŜS�pkðiÞ
– – – – – – – – – – – – – – – – –*/

mean¼mean(of y1–y64);
std¼ std(of y1–y64);
e¼ (usl�mean)/std;
f¼ (mean�lsl)/std;
Spk¼ 1/3*probit(0.5*probnorm(e)+0.5*prob-
norm(f));

output;

end;

/* – – – – – – – – – – – – – – – – -

Input the original sample data of n¼ 64 sample
observations

– – – – – – – – – – – – – – – – –*/

cards;

�0.98 4.63 0.78 �1.67 2.34
�1.97 �0.07 �2.32 2.17 3.78
0.35 �1.20 3.12 �5.58 �1.91
�1.18 �0.66 �3.16 5.01 �1.42
2.20 2.20 2.16 �2.87 �0.30
0.83 �0.86 �2.04 1.24 5.83
0.50 �0.81 3.07 �1.42 �2.42
�4.75 1.02 �6.50 1.34 1.06
0.10 5.02 �0.76 �4.84 1.28

2.19 0.16 �2.66 �0.87 �3.52
�0.05 1.11 1.47 0.28 �1.02
�9.24 �2.01 �2.30 4.26 3.41
3.34 2.85 �2.43 �1.84
;

/* – – – – – – – – – – – – – – – – -

Compute �SS�pk and S
�
ŜSpk
from the 10000 bootstrap esti-

mates ŜS�pkðiÞ
– – – – – – – – – – – – – – – – –*/

proc univariate data¼ size normal plot;
var Spk;

output out¼ out1 mean¼mean
std¼ stddev;

/* – – – – – – – – – – – – – – – – -

Calculate the lower confidence bound on the Spk
– – – – – – – – – – – – – – – – –*/

data sbcl;

set out1;

SBLB¼mean-probit(0.95)*stddev;
proc print;

var SBLB;

run;
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